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Received 14 December 1992 

Abstrset Mnite-range quantum spin glass models with arbitrary spin are studied within 
the Maaubara time formalism. As an example the dynamic spin self-interaction R(t ,  t') 
and the resulting phase diagrams are presented Car the quantum king model in a 
"verse field. Some mults, such as the phase transition temperature$ are also 
reporred for the XY and the Heisenberg models. 

In quantum spin glass models with infinite-range interactions [I-IO] much attention 
has been paid to the description of the transition between the paramagnetic (P) and 
spin glass (SG) phases. For the quantum spin glass some of the quantum fluctuations 
persist in the paramagnetic phase in the form of the so-called dynamic spin self- 
interaction R(t, t'). This results in theories in which even this phase is not well 
described. However, some insight into the nature of the P phase can be achieved by 
an appropriate approximation of the spin self-interaction term of the paramagnetic 
free energy [2,3]. The resulting form of R(t, 1') permits the construction of a line 
separating the P and SG phases. 

In this work we present a method which enables us to obtain reliable 
approximations of the spin self-energy, regardless of the particular model or value of 
the spin. 

The general formulation we use requires that the Hamiltonian H of the system 
of N interacting spins contains an exchange (two-site) part H,, and a single-site part 
H,. The singlesite term may describe, for example, an external transverse field, or a 
single-ion anisotropy [4]. For the sake of clarity we restrict ourselves to the transverse 
quantum Sherrington-Kirkpatrick (SK) model [l], Le. we outline the method using 
the example of the king model with arbitrary spin in the presence of an external 
transverse field. The generalization to other models is straightfonvard. Some results 
for the XY and the Heisenberg models are also given. 

In our example H, and If, are 

N N 

The sum is over all pairs of spins and the exchange interactions J . .  are independent 
random variables governed by a symmetric Gaussian distribution & h  zero mean and 
variance 1 / N .  
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In order m obtain the free energy averaged over the distribution of { J i j }  we 
apply the replica method and Matsubara 'time' representation [2,4, where the latter 
is based on the operator identity 

T, ~ X P  [J' d~ W r ) ]  = "p(-tA) expl(t - ~ o ) ( A  + B)1 exp(t0-4) 

B(1) = exp(-tA)B exp(tA). 

Here the time ordering operator T, rearranges the operators in the expansion of 
the exponential, in order of decreasing time arguments. While the replica method 
handles the quenched disorder, the imaginary time representation enables us to avoid 
the problem of the noncommutativity of the spin operators and to treat them as c 
numbers. Applying (2) with t = 1 and to = 0, the replica-symmetric free energy 
reads 

$0 

(2) 

where 

@( R)  = p /' dT 1' dr '  R( r ,  r') U,( .)U, ( T') 
U 0 

u=(T)  = exp(-t~#u,)u,exp(t~ICu,) 

In equation (3b), the quantity q corresponds m the EawardsAnderson spin glass 
order parameter and R(t, t ')  is the dynamic spin self-interaction Both q and 
R(t,  t') are determined from saddle-point equations. In the paramagnetic phase 
q vanishes and the phase transition takes place when the mefficient of q2 in the bee 
energy, equation Pa), becomes zero as a function of the temperature T. TIIus, the 
spin-freezing temperature can be evaluated directly from an expression calculated in 
the high-temperature phase, and the equation of the phase transition line is 

Dr = (dr/&$ exp(-pr2). 

Here the angular bracket means the thermal average with respect to the effective 
Hamiltonian defined in the exponent in equation (3b). Since the exact solution of 
equation (4) for R(t, t') is not known, a reasonable approximation is sought. Our 
approximation is made by separating R(t ,  t') into a t-independent part R, and a 
variable part C( t , t ') 

R(i, t') = Ro + C(t ,  t') (5) 
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and treating the latter as a ’perturbing’ term. In this way we rewrite equation (3c) as 
@ ( E )  = + V, where 

V = l d ~ L d ~ ‘  C(T,T‘)U,(T)U,(T‘) (6) 

Using the standard cumuknt expansion of InQ in equation (3a), we can 

@ U  = PR,IZ(a,) 

and I (us)  is defined in equation (34. 

approximate the paramagnetic free energy by 

where 

The approximation C(t, if) = 0 gives the so-called static approximation. Keeping 
only the firstader term in V we obtain 

Fi = - i l d T 1  d#[R, + C(T,T’)]’ + hQo + P /  d T 1  dT’C(T,T’)gZ(r,T‘) 
I 1 1 

U 

(9) 

The saddlepoint equation 6Fp1/6C(~, 7’)  = 0 gives 

R, + C(T, T ’ )  = (P/2)g,(r, T ‘ )  (11) 

i.e. the function R(t ,  t’) (5) is approximated by the correlation function of the static 
approximation (10). Using this relation the saddle-point equation for R, and the 
critical line equation are given by 

respectively. 

may be calculated. 
transformation and then applying equation (2) we get for Qu 

Now we show brielly how Qu, gz and higher-order correlation functions 
Linearizing I(o,) in exp(aU) by the HubbardStratanovich 



L120 Letter to the Editor 

where h is the length of h. Similarly, after the linearization we have 

Dividing the integral I(u,) in the exponent of (14) (see also equation ( 3 4 )  into a 
sum of three parts, e.g. for t > t', taking [O, 1) = [0, t ' )U[t ' ,  i) U [t ,  l), and applying 
equation (2) for each time-ordered part yields 

g2(t ,  t') = /Dzp2(h,  1 - t') (15) 

p ~ ( h , t )  = (l/QO)Tr exp(h. ~)d ' ( tb ,h (o )  t E [o, 1) (16) 

u,"(t) = exp[ - (h .~ ) t ]u , exp[ (h .u ) t ]  (17) 

and 

p z ( h 7 - l )  = P z ( h ,  1 - t ) .  (18) 

Direct calculation of g2 is straightfolward but laborious. 
qualitative behaviour of g2 it sutlices to derive a differential equation for p2( t ) :  

However, to see the 

a2p2(h, t ) / &  = constant t h2p2(h, t ) .  (19) 

Because of the periodicity (18) of p2, equation (19) has the mlution 

p z ( h ,  t )  = ~ ( h ,  U) + b ( h ,  u)msh(fh(l-2t)] .  (20) 

For the Hamiltonian (1) the coefficients a and b are 

a(h,u) = [(hZ- ~ 2 1 C 2 ) / h 2 ] a Z Q u ( h ) / ~ h 2  

and 

b(h,u) = (P21C2/2h2)[u(ut l )QQ(h)  -a2Qu(h)/i3h2]. (21) 

The expressions (13), (20) and (21) for the functions p2(h ,  t) and QQ(h) enable 
us, through equation (12), to construct the phase diagram for the Jsing model, with 
arbitrary spin U, in a transverse field. We present the phase diagram for spin U = 4 
and U = 1 in figure 1. The results for U = f are equivalent to those obtained 
by ThtterSuzuki formalism [ll]. The zero-temperature limit of the critical field 
K,(T = 0) for arbitrary spin U is given by 

h ; ( T = O ) = u + ~ u ( ~ - 5 / 1 6 )  
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Fium L Phase transition tines ior the king spin glass in a Vanweme field. T: 
temperature in units of J = ((q,)/N)'l2; K: field in mils of J; full curves: 
equation (12); broken cures: static approximation with RO # 0. 

Wle L Phase transition temperatures for the XY and Heisenberg models without 
exlernal field for the spin number e = 1 using the temperature MrmaLiZation of the 
numerical calculations. 

XY Heisenberg 

l l i s  work 0.762 0.588 
Numerical 0.7fi3 [fi] 0.593 [3] 
calculation 
Static 0.756 p,4 0.577 [Z] 
approximation 
lFD 0.541 1121 - 

ie. for large U our approximation yields the static solution I<Ehtic(T = 0) = 20. 
We conclude by noting that the set of equations (13,20,21), corresponding to the 

lirst-order approximation in C(r), as well as the higher-order approximation [ll], 
can also be obtained for other SK models. We have derived the first-order equations 
for the XY and the Heisenberg models without external field, but give here only 
the resulrs. The calculation follows closely that of this paper and one can use the 
self-consistent supposition that the matrix R,,,,,(t, t')(n, m = I, y, z )  is diagonal 
[2]. The phase transition temperatures for CT = 

The replica method combined with the Matsubara time representation has been 
used to construct a reliable approximation of the spin self-energy of the SK models. 
Spin freezing temperatures calculated for simpler models are in good agreement with 
the results of the numerical calculations [3,6-lo]. We believe that these relatively 
simple approximations can be successfully applied to more complicated models for 
which extensive numerical calculations are difficult. 

are reported in table 1. 
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